
7 dot THz **Seven**

SiGe HBT Technology Development in the DOTSEVEN Project

Alexander Fox¹, Bernd Heinemann¹, Josef Böck², Klaus Aufinger²

¹IHP, ²Infineon Technologies AG

Open Bipolar Workshop 3 October 2013, Bordeaux

Outline


- DOTSEVEN Project
- DOTSEVEN Workpackage 1: SiGe HBT technology platform
 - WP1 Task 1: Advanced Device Architectures
 - WP1 Task 2: F_T Enhancement
 - WP1 Task 3: CMOS Compatibility
 - WP1 Task 4: Circuit Runs
- Summary

DOTSEVEN in a Nutshell

- Follows up on successful ideas of DOTFIVE (2/2008 7/2011)
- Duration: 10/2012 3/2016
- 14 Partners from 6 EU countries
- Project coordinator: Infineon Technologies AG
- Supported by European Commission: FP2 IP (ICT 316755)
- Budget: 12.3 M€ (European Commission: 8.6M€)
- → Development of a SiGe HBT technology with f_{max}= 700 GHz

DOTSEVEN Partners

Addressed Application Fields

- Broadband ADCs with 50-100GS/s and →25GHz signal bandwidth at 5-6 bit resolution
- 100 Gb/s wireless data transmission
- Satellites

Radar Applications

- →120 GHz industrial sensors and automation
- Automotive radars (affordable vehicle and road safety for everyone)

- Secure Mass transportation (security screening, mmWave person scanning)
- Heath care and biology
- Medical equipment
- Patient monitoring
- Tissue and genetic screening

Main Objectives of DOTSEVEN

- The realization of <u>SiGeC Heterojunction Bipolar Transistors</u> (HBTs) operating at a maximum frequency up to <u>0.7 THz</u> at room temperature
- The design and demonstration of working integrated <u>mm- and sub-mm-wave circuits</u> using such HBTs for specific applications
- The evaluation, understanding, and modeling of the relevant physical effects occurring in such high-speed devices and circuits

From DOTFIVE to DOTSEVEN

DOTFIVE		ST [1]	IFAG [1]	IMEC [1]	IHP1 [1]	IHP2 [2]
Results	W _E	100	130	75	120	155
	f_{T}	290	240	245	300	310
	f _{max}	430	380	460	500	480
	BV_CEO	1.5	1.5	1.7	1.6	1.75
	τ_{D}	1.9	2.4	-	2.0	1.9

^[1] P. Chevalier et al., "Towards THz SiGe HBTs," BCTM Tech. Dig., 2011, pp. 57 – 65.

^[2] A. Fox et al., "SiGe:C HBT Architecture with Epitaxial External Base," BCTM Tech. Dig., 2011, pp. 70 – 73.

Project Organisation: Workpackages (WPs)

■ WP1 : SiGe HBT technology platform	 Advanced device architectures f_T enhancement CMOS compatibility Circuit runs 		
■ WP2 : TCAD and physics-based modeling	 Advanced device simulation Development of simulation tools Reliability modeling 		
■ WP3 : Compact modeling	 Parameter extraction & methodology Accurate compact models Predictive & statistical modeling 		
■ WP4 : Applications & demonstrators	Benchmark circuitsMMIC building blocksApplication Demonstrators		
■ WP5 : Training and dissemination			
■ WP6 : Project management			

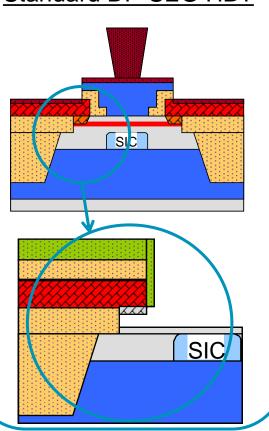
Project Organization: Workpackages (WPs)

■ WP1 : SiGe HBT technology platform	 Advanced device architectures f_T enhancement CMOS compatibility Circuit runs 	
■ WP2 : TCAD and physics-based modeling	Advanced device simulationDevelopment of simulation toolsReliability modeling	
■ WP3 : Compact modeling	 Parameter extraction & methodology Accurate compact models Predictive & statistical modeling 	
■ WP4 : Applications & demonstrators	Benchmark circuitsMMIC building blocksApplication demonstrators	
■ WP5 : Training and dissemination		
■ WP6 : Project management		

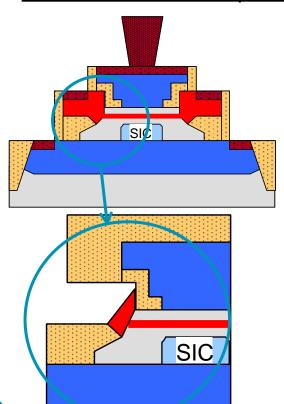
WP1 - Task 1: Advanced Device Architectures

2 Sub-Tasks:

(1) Demonstrate 700GHz SiGe - HBT


- Initial HBT architecture: SiGe HBT with epitaxial external base (EEB-module) as developed in DOTFIVE ($f_{max} = 480 GHz / \tau_D = 1.9 ps$)
- → Stage 1: $f_{max} = 600 GHz / \tau_D = 1.7 ps$
- → Stage 2: $f_{max} = 700GHz / τ_D = 1.4ps$

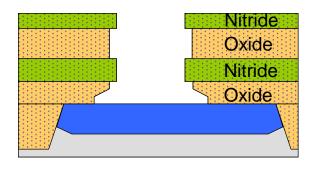
(2) Joint flow IHP/Infineon


- Pre & post SiGe-HBT processing at Infineon (e.g. shallow- & deep trench / collector epi & implants / resistors for RO / metallization)
- SiGe-HBT module at IHP (architecture with epitaxial external base, EEB)
- \rightarrow Demonstrate performance of IHP HBT ($f_{max} \sim 500 \text{GHz} / \tau_D = 1.9 \text{ps}$)
- → Investigate different collector constructions and metallization schemes

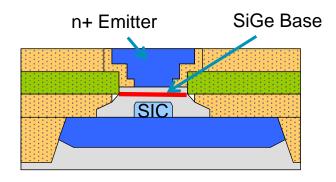
Review of HBT with Epitaxial External Base (EEB)

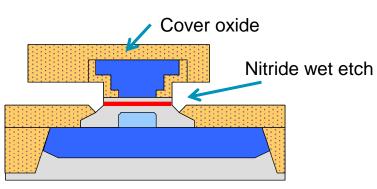
Standard DP-SEG HBT

DP-SEG HBT with epitaxial external base (EEB)


In-situ doped lateral base link growth after SiGe Epi & emitter formation

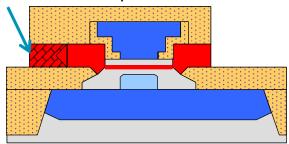
- → no separate <u>link</u> anneal
- → <u>lateral link</u>: no compromise C_{CB} vs. R_B


Review of EEB-HBT Process Flow (1/3)

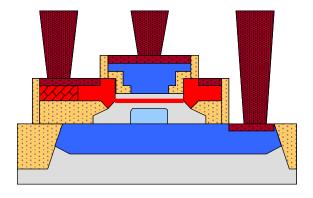


- IHP collector module
 - STR formation
 - Collector implant & anneal
- ONON Layer stack deposition
- Window dry etching
- Collector opening by wet etching

Review of EEB-HBT Process Flow (2/3)

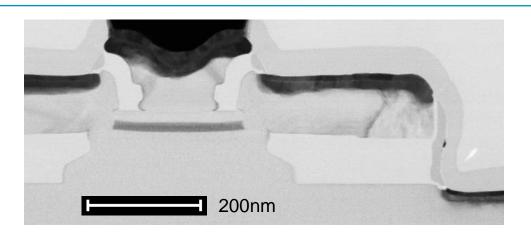


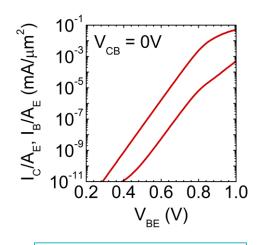
- 2-Step selective epitaxial growth of HBT layer stack (Si-buffer, SiGe-base, Si-cap)
- SIC implant via inside spacers after 1st Si- buffer
- E / B Spacers
- Emitter deposition & CMP
- Cover oxide deposition
- Base patterning
- Nitride removal (wet etching)

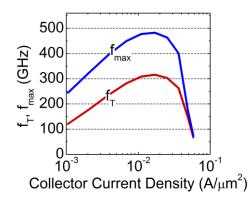


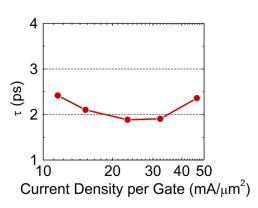
Review of EEB-HBT Process Flow (3/3)

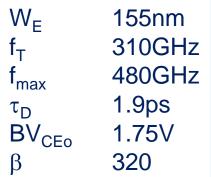
selective & differential external base epi

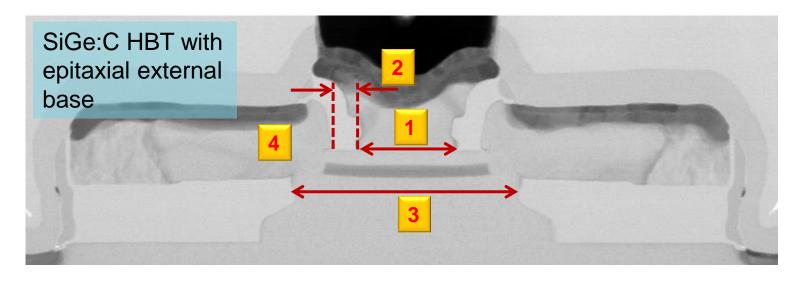



- Selective epitaxial growth of base link
- differential epitaxial growth of outer external base areas
- Si dry-etch via oxide hard-mask

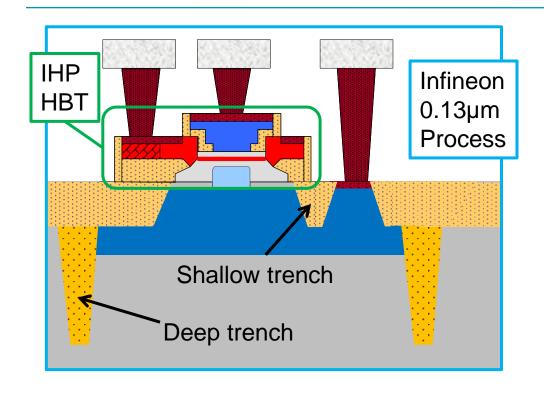



- Oxide removal
- Final RTA
- Silicide formation
- BEOL formation


Review of DOTFIVE Results for EEB-HBT [1]



Subtask 1: Planned EEB-HBT Process Development

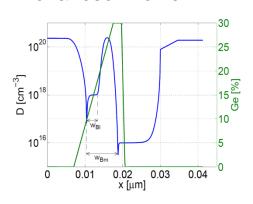

- Lateral scaling of different dimensions (see next slide)
- Transfer layout from 0.25µm to 0.13µm design rules
- Process optimization of external base epitaxy
- Optimize process flow with respect to yield
- → This is expected to lead to the <u>first stage</u> of performance enhancement
- → The planning for the <u>second stage</u> will depend on results from this first scaling stage and from results of WP1 task 2 (vertical profile scaling) and input from WP2 (device simulation) and WP3 (predictive modeling)

HBT Scaling and Process Adjustment – First Stage

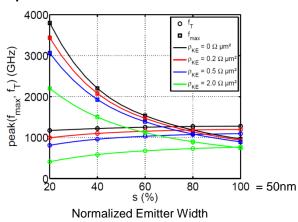
- (1) Smaller emitter window (DOTFIVE: 155nm)
- (2) Optimize emitter/base spacers: minimum dimension to be explored
- (3) Smaller collector window
- (4) Process optimization of external base epitaxy

Task 1 / Sub-Task 2: Joint Flow Infineon & IHP

- Joint mask set developed
 - Additional IHP HBT layers in Infineon 0.13µm mask set
 - Layers for IHPs HBT adjusted to Infineons HBT layout
- Process interfaces defined
- Critical processing steps identified:
 - Emitter CMP
 - CVD depositions, incl. SiGeepitaxy



WP1 – Task 2: f_T Enhancement


- Advanced simulations predict considerable room for improving f_T
 - "Physical limit" beyond 1THz
 - Very aggressively scaled vertical profile
 - Demands on stability at high current densities and emitter resistance very challenging

Results of Device Simulation [1]

Advanced Profile

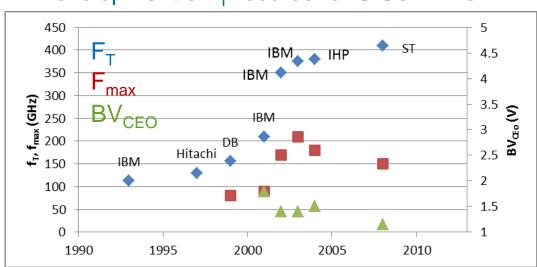
Impact of Emitter Resistance

CBEBC bulk device

Sef-heating included

Emitter length =10x Emitter width

 j_C @peak $f_T > 60$ mA/ μ m² for s=100%


[1] M. Schröter et al., "Physical and Electrical Performance Limits of High-Speed SiGeC HBTs – Part I and II," IEEE Trans. Electron Devices, vol. 58; No. 11, pp. 3687-3706.

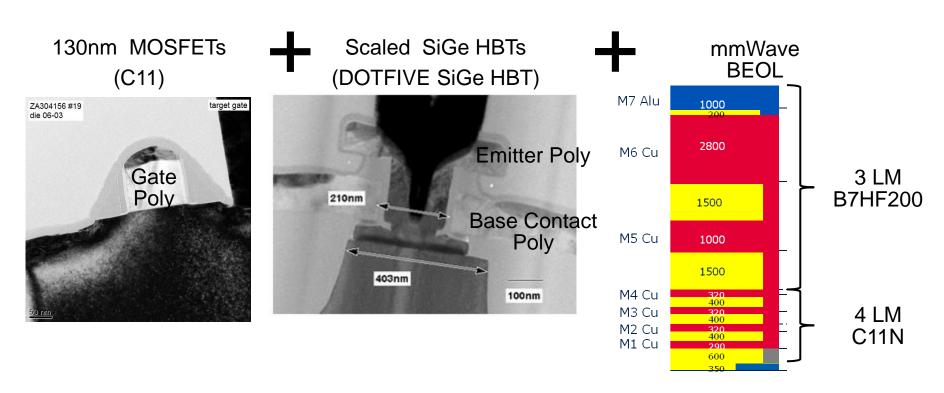
Motivation for WP1 Task f_T Enhancement

- Increase of high-speed circuit performance needs balanced improvement of f_{max} and f_T
 - Appropriate ratio of f_{max}/f_T needs to be clarified
- How realistic are the predictions?
- How far can f_T be increased under manufacturability constraints?

Development of f_T records for SiGe HBTs

→ Potential exhausted?

Activities for WP1 Task f_T Enhancement


- Develop flow with low-thermal budget for scaling of vertical profile
 - Thermal treatments >650°C shall be avoided before final RTP step
- Optimize base profile on technology with non-selective base-epitaxy
 - More flexibility for generating extreme profile variations
- Platform for device model parameter calibration
 - Fabrication of HBTs with special base profiles for validating device simulations
- Impact of back-end processes have to be investigated
- First studies for f_T maximization don't need further lateral scaling
 - Only in 2nd project phase test of optimized vertical profiles in flows with low external parasitics

WP1 – Task 3: CMOS Compatibility

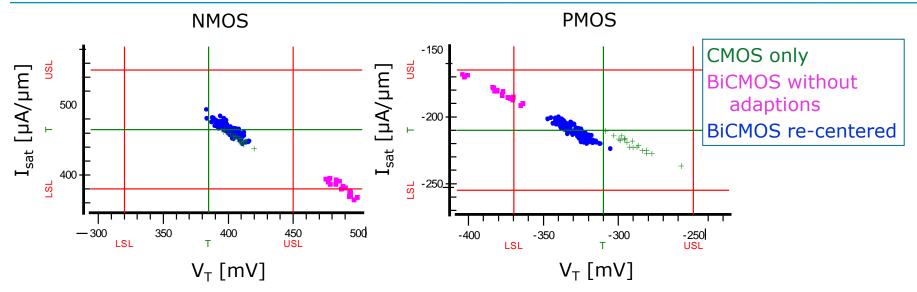
- DOTFIVE: pure bipolar technology developed
 - Suitable for applications like 60GHz WLAN or 77GHz radar
- Future product generations require more digital functionality
 - E.g. memory, interfaces, A/D conversion and base band processing
- → BiCMOS integration will be investigated in DOTSEVEN
 - Integration of the conventional (DPSA-) SiGe HBT developed in DOTFIVE into a 130nm CMOS platform at Infineon
 - Investigation of possibility to adapt IHP's HBT with epitaxially grown base link to Infineon's 130nm BiCMOS platform
 - IHP SG13G2

Technology Concept B11HFC (Infineon)

0.13 µm SiGe BiCMOS with 7 layer BEOL

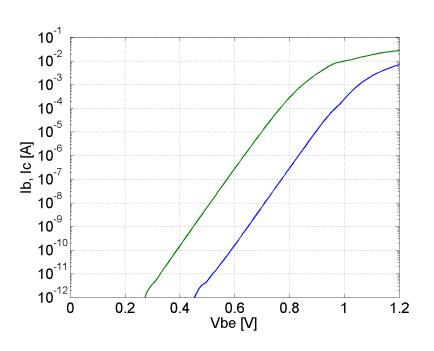
Constrains of HBT Integration into CMOS

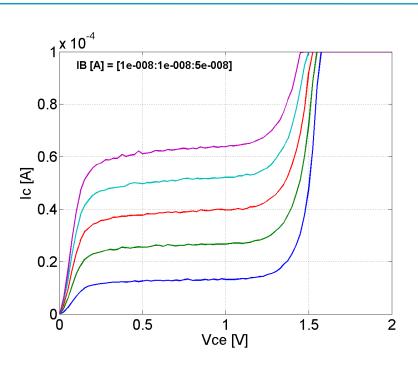
- General constraint for BiCMOS development in practice:
 - HBT is integrated into an established CMOS technology
 - → CMOS devices should not be changed (reuse CMOS IP, ROM, SRAM, ...)
 - MOS thermal steps (LDD-, SD-anneals, poly oxidation) deteriorate HBT performance
- <u>Three problems</u> were identified for integration of DOTFIVE HBT into Infineon's 130nm CMOS technology
 - (1) Wafer orientation for best HBT performance and yield (notch in [010] orientation) is different from CMOS standard
 - (2) Incompatible thermal budgets for HBT and CMOS fabrication
 - (3) Structural problems during process integration



CMOS Integration Problems: Corrective Measures

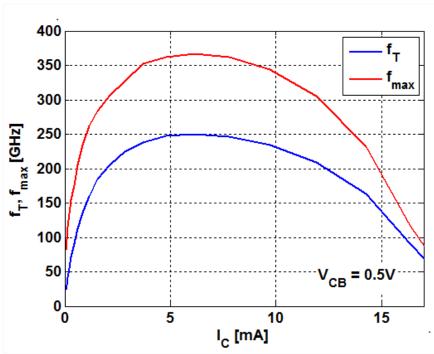
- (1) Substrate orientation: adjust CMOS
 - Re-center MOS parameters by modification of implant and anneal steps
- (2) Thermal budget: find compromise
 - Reduce LDD anneal so that the MOS-parameters can still be re-centered and the base can be deposited before CMOS spacers
 - Reduce S/D anneal so that MOS parameters can still be re-centered
 - Adjust base- and emitter-modules of the HBT to the reduced S/D anneal (which is still higher than in the DOTFIVE HBT process)
- (3) Structural problems: manifold!
 - Example: removal of layers of bipolar fabrication from MOS-gates → introduction of a nitride protection layer that acts as etch-stop-layer during layer removal


Re-Centering of CMOS: LDD and SD Implants

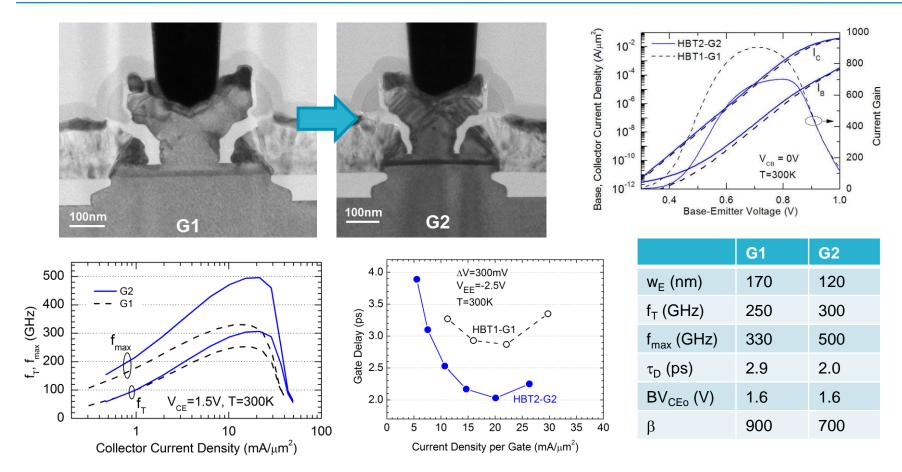


- Modified substrate orientation
- Modified thermal budget
- NMOS re-centered
- PMOS re-centered with respect to current
 - Improved leakage due to rotated substrate

	CMOS	BiCMOS	
Notch	0°	45°	
LDD anneal	1006°C, 5 sec.	1010°C spike	
S/D anneal	1006°C, 5 sec.	1050°C spike	

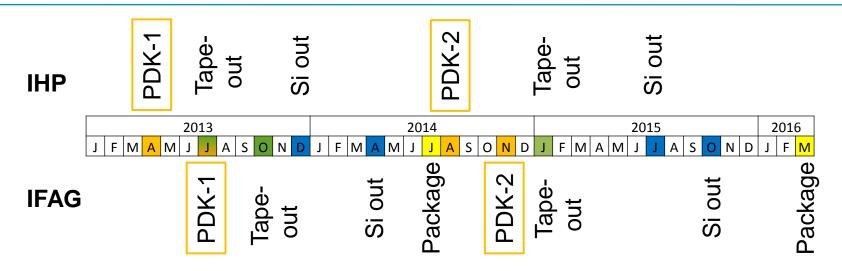

DC Characteristics of SiGe HBT in BiCMOS Flow

- Successful integration of DOTFIVE SiGe HBT with 0.13 µm CMOS
- Adjusted emitter doping to enable emitter drive-in with CMOS S/D anneal
- Ideal transfer characteristics with very low base leakage current


RF Performance SiGe HBT in BiCMOS Flow

	DOTFIVE	BiCMOS	
emitter doping	2 x 10 ²¹ cm ⁻³	3 x 10 ²⁰ cm ⁻³	
emitter drive-in	930°C, 3 sec.	1050°C spike	

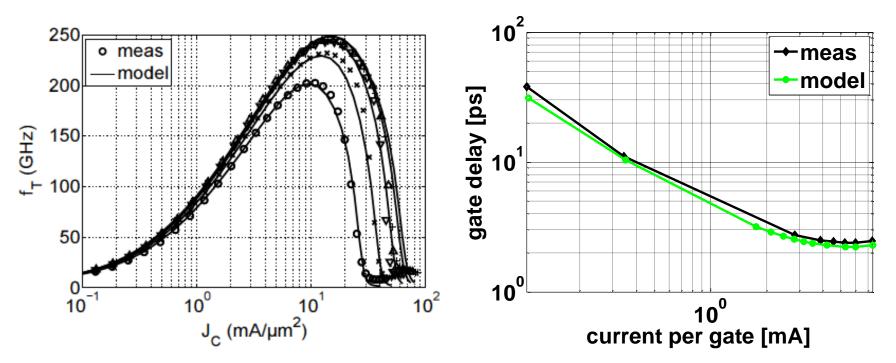
- Adjusted emitter doping to enable emitter drive-in with CMOS S/D anneal
- 250 GHz f_T, 360 GHz f_{max}
- Similar performance in BiCMOS flow as in pure bipolar (DOTFIVE)


SG13G2: IHPs 130nm BiCMOS + DOTFIVE HBT [1]

[1] H. Rücker et al., SIRF 2012, Santa Barbara, USA, pp. 133 – 136

WP1 – Task 4: Circuit Fabrication

- Two complete circuit fabrication cycles at Infineon and IHP
- Infineon additionally provides package runs
- The first iteration of PDKs is based on the DOTFIVE technologies
- The second iteration of PDK's will include technology advancements, as far as yield and stability can be ensured

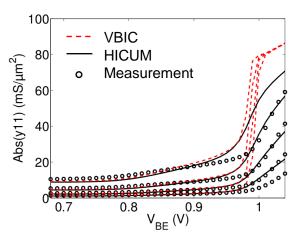


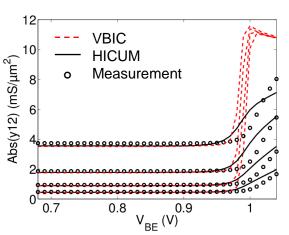
Infineon Process Design Kit for First Design Cycle

- Process B11HFC: 130nm BiCMOS process with latest DOTFIVE HBT performance level
- PDK including the required simulation models, layout cells, and verification tools (DRC, LVS, ...) delivered to the circuit partners
- Comprehensive library of scalable npn transistors for optimizing applications (emitter length range of 0.7μm to 10.0μm, different contact configurations like BEC, BEBC, CBEBC, ...)
- TaN resistor, MIM capacitor, high-performance varactor (based on the high voltage npn transistor), transmission lines, ...
- Physics-based compact models, including advanced HiCUM models for the high speed npn transistors by TU Dresden

Infineon Process Design Kit for First Design Cycle

Examples for model / hardware correlations on device and circuit level




HiCUM model vs. measurements for (a) f_T vs collector current (@ V_{CB} from -0.5 to +0.5V) and (b) CML ring oscillator gate delay.

IHP Process Design Kit for First Design Cycle

- Process SG13G2: 130nm BiCMOS process with latest DOTFIVE HBT performance level
- HICUM Model introduced to IHP design-kit
- VBIC Model with improved substrate network
- Symmetric MOS varactors introduced to IHP PDK

HICUM fits Y-parameters in the high current regime better than VBIC

Summary

- HBTs with f_{max} = 700GHz / τ_D = 1.4ps and circuit demonstrators operating up to 240GHz are targeted for Q1 2016
- In the first step improvements up to $f_{max} = 600 GHz/\tau_D = 1.7 ps$ are expected by scaling the HBT architecture with epitaxial external base (EEB) developed in DOTFIVE
- Industry compatibility of the EEB architecture will be tested in a joint flow between Infineon and IHP
- f_T limits will be explored by testing aggressive vertical profiles
- Investigate BiCMOS integration issues of advanced SiGe HBTs
- Two complete design cycles by both technology partners are scheduled for demonstration of integrated mm- and sub-mm-wave circuits

Acknowledgement

- Andreas Pawlack, Julia Krause (TU Dresden, HiCUM modelling)
- Holger Rücker (IHP)